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Abstract

We can choose the best option from the provided criteria by using multi-criteria
decision-making. Numerous scholars have used fuzzy directed divergence for mul-
ticriteria decision making extensively in recent years. The use of parameterized
Hesitant Fuzzy Soft Set theory in decision-making has also been defined by some
academics. In this post, we’ll look into the issue of many criteria decision making
in a fuzzy setting. The introduced metric is applied to an issue of decision-making.
A numerical illustration of an issue involving decision-making is shown. An illus-
trated example of the new define approach regarding the admission preference of a
student for a postgraduate programme in the science stream is used to illustrate the
analysis of a fuzzy multicriteria problem. The use of the suggested fuzzy directed
divergence in decision-making situations is also demonstrated.

1. Introduction

Information theory examines issues with any system that incorporates the distribution,
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storing, retrieval, and decision-making of information. In other words, information

theory investigates all issues pertaining to the thing known as a communication system.

The source of messages may be a person or machine that produces the messages. The

encoder transforms the messages into an object that is suitable for transmission, such

as a series of binary digits (digital computer applications), the channel is a medium over

which the coded message is transmitted, and the decoder converts the received output

from the channel and attempts to convert the received output back into the original

message to transport information. However, due to some disturbance in the system,

this cannot be done consistently.

Shannon (1948) [21] is credited with identifying information theory; the measure of

information theory is known as entropy w.r.t. probability distribution. Additionally,

Shannon (1948) demonstrated a number of the measure’s mathematical features. The

measure of information associated with the two probability distributions of discrete

random variables, p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) was quantified by Kull-

back and Liebler [13] in 1952. This phenomenon is referred to as directed divergence,

D(pllq) =
n∑
i=1

pi log pi
qi

. Other measures of divergence on a set of probabilities exist and

go by different names, including distance and discrimination, for example. Divergence

is a non-negative function that turns into zero when two sets coincide, and these are

the inherent features of directed divergence.

Other measures of divergence on a set of probabilities exist and go by different names,

including distance and discrimination, for example. Divergence is a non-negative func-

tion and turns into zero when two sets coincide. These are the inherent features of

directed divergence.

Zadeh (1965) [35] introduced fuzzy set theory, which is similar to probability theory.

Human thought is characterised by uncertainty and fuzziness, which are connected to

many real-world issues. Our language, our judgement, and the path of our acts are

all fuzzy. Set theory, which determines whether an element belongs to a set or not,

gained a completely new dimension with the development of fuzzy set theory. A fuzzy

set Ã is subset of universe of discourse X, is defined as Ã = {(x, µÃ(x)|x ∈ X} where

µÃ : X → [0, 1] is a membership function of Ã. The value of µÃ(x) describes the degree

of belongingness of x ∈ X in Ã.

Shannon entropy works with probabilistic uncertainty, whereas fuzzy entropy deals with
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vagueness and ambiguity. De Luca and Termini (1972) [6] described the characteristics

of fuzzy entropy and listed a number of properties (1-4) that fuzzy entropy should

satisfy:

1. If the set is crisp, fuzzy entropy is at its lowest.

2. When the membership value is 0.5, the fuzzy entropy is at its highest.

3. If the set is sharpened, fuzzy entropy decreases.

4. A set’s fuzzy entropy is equal to its complement

Fuzzy divergence, one of several measures of fuzzy entropy and measure of fuzzy di-

vergence that correspond to a fuzzy set Ã. relative to some other fuzzy set B̃ was

introduced by Bhandari and Pal in 1993. It is a fuzzy information measure for discrimi-

nation of a fuzzy set Ã relative to some other fuzzy set B̃. Let F (X) be the collection of

all fuzzy subsets of X and let X be a universal set. If a mapping D : F (X)×F (X)→ R

satisfies any of the following conditions, it is said to represent a divergence between two

fuzzy subsets: if it satisfies following properties for any Ã.B̃ C ∈ F̃ (X).

1. D(Ã, B̃) is non-negative.

2. D(Ã, B̃) = D(B̃, Ã)

3. D(Ã, B̃) = 0 if Ã = B̃.

4. Max{{D(Ã ∪ B̃ ∪ C̃), D(Ã ∩ C̃, B̃ ∩ C̃)} ≤ D(Ã, B̃).

The simplest fuzzy directed divergence is

D(Ã, B̃) =

n∑
i=1

[
µA(xi) log

µA(xi)

µB(xi)
+ (1− µA(xi)) log

(1− µA(xi))

(1− µB(xi))

]
given by Bhandari and Pal [1] (1993), where µA(x1), µA(x2), · · · , µ(A(xn) describes the

degree of belongingness of xi ∈ X in A and µB(x1), µB(x2), · · · , µB(xn) describes the

degree of belongingness of xi ∈ X in B respectively. Later, Fan and Xie (1999) gave

the discrimination of fuzzy information of fuzzy set A against B.

I(A,B) =

n∑
i=1

[
1− (1− µA(xi))e

µA(xi)−µB(xi) − µA(xi)e
(µB(xi)−µA(xi))

]



28 ROHIT KUMAR VERMA & JHARANA CHANDRAKAR

with respect to exponential fuzzy entropy given by Pal and Pal[1] (1989). Further,

corresponding to entropy given by Havrda-Charvat [9] (1967), Kapur [ 11](1997) gave

a generalized measure of fuzzy directed divergence as

Iα(A,B) =
1

α− 1

n∑
i=1

[
µαA(xi)µ

1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α − 1

]
α 6= 1, α > 0.

Divergence is found in various applications in the real world such as image segmentation,

medical sciences, pattern recognition, fuzzy clustering etc.

These operations are used to combine two or more fuzzy sets into one. An aggregation

operation (Klir & Folger, 1988)[12] defined as a function A : [0, 1]n → [0, 1] satisfying:

1. A(0, 0, · · · , 0) and A(1, 1, · · · , 1) = 1.

2. A is monotonic in each argument.

Bhatia and Singh [2] (2013), proposes a measure of arithmetic-geometric directed diver-

gence of two arbitrary fuzzy sets A and B is as

T (A,B) =
n∑
i=1

[
µA(xi) + µB(xi)

2
log

µA(xi) + µB(xi)

2
√
µA(xi) + µB(xi)

+
2−mA(xi)− µB(xi)

2
log

2− µA(xi)− µB(xi)

2
√

2− µA(xi)− µB(xi)

]
and defined generalized triangular discrimination between two arbitrary fuzzy sets A

and B as follows:

∆α(A,B) =

n∑
i=1

(µA(xi)− µB(xi))
2α

[
1

(µA(xi) + µB(xi))2α−1

+
1

(2− A(xi)− µB(xi))2α−1

]
.

They also defined a new class of measure of fuzzy directed divergence for two arbitrary

sets A and B as

Dβ
α(A,B) =

1

β − 1

n∑
i=1

[(
µA(xi)

αµB(xi)
1−β + (1− µA(xi))

1−α(1− µB(xi))
1−α
) β−1
α−1 − 1

]
α > 0, α 6= 1, β > 0, β 6= 1.
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and introduced (α, β) generalized arithmetic-geometric measure of fuzzy directed diver-

gence

T βα (A,B) =
1

2

[
Dβ
α

(
A+B

2
, A

)
+Dβ

α

(
A+B

2
, B

)]
and T βα (A,B) = T (A,B) at α = β = 1.

A new measure of fuzzy directed divergence for two Fuzzy sets A and B,

MF
H∗ A∗(A,B) =

n∑
i=1

(µA(xi)− µB(xi))
2

2

[
1

µA(xi)− µB(xi)
+

1

2− µA(xi)− µB(xi)

]
where A∗ : [0, 1]2 → [0, 1] such that A∗(a, b) = a+b

2 and H∗ : [0, 1]2 → [0, 1] such

that H∗(a, b) = a2+b2

a+b was defined by Bhatia and Singh (2013), they also discussed

application of new directed divergence measure in images segmentation.

Bhatia and Singh [4] (2013), introduced three new divergence measures between fuzzy

sets and some properties of these divergence measures. They all defined three aggrega-

tion functions corresponding to divergence measures. Verma [24, 26, 27, 28, 29] et al.

(2012),defined a measure of entropy as

Va(P ) =

n∑
i=1

ln(1 + api)−
n∑
i=1

ln pi − ln(1 + a), a > 0

for probability distribution, and its corresponding measure of directed divergence is

defined as

Dα(P : Q) =
n∑
i=1

qiln
pi

qi
−

n∑
i=1

qiln

(
qi + api
qi

)
+ ln(1 + a), a > 0

and corresponding measure of fuzzy directed divergence is

D(A,B) =
n∑
i=1

µB(xi)ln

(
mA(xi)

aµA(xi) + µB(xi)

)

+

n∑
i=1

(1− µB(xi))ln

(
1− µA(xi)

1 + a− aµA(xi)− µB(xi)

)
+ ln(1 + a), a > 0

and their properties were studied.

Bhagwandas [5] et al. (2021) proposed a new fuzzy directed divergence as follows

Hα,β(A,B) =
1

(α− 1)β

n∑
i=1

{[
µαA(xi)µ

1−α
b (xi) + (1− µA(xi))

α(1− µB(xi))1−α
]β − 1

}
α0, α 6= 1, β 6= 0.
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Verma [32, 33, 34] gave a measure of fuzzy directed divergence is

Hα,b(A,B) =
1

(α− 1)β

n∑
i=1

log
{[
µαA(xi)µ

1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α]− 1

}
α > 0, α 6= 1, β 6= 0.

Li et al. (2014a) [14] suggested two methods based on fuzzy equivalences and dis-

similarity functions to define divergence measure in fuzzy environments. This type of

method has also been discussed by Verma [25, 30, 31]. Different approaches to defining

fuzzy equivalences were put out by Li et al. (2014b)[15], who then utilised them to de-

velop fuzzy set similarity measures. Inequalities between several fuzzy mean divergence

measures are presented by Tomar and Ohlan (2014a). Tomar and Ohlan (2014b) [22]

establish a connection between the suggested divergence measure and the entropy of

order by introducing a parametric generalised exponential measure of fuzzy divergence

of order.

A generalised measure of fuzzy divergence was put out by Tomar and Ohlan (2015)

[23], who used it to solve multi-criteria decision-making issues. The robustness of fuzzy

connectives and reasoning utilising generic divergence measure was studied by Li et al.

in 2016[16]. He et al. (2016) demonstrated that the similarity measures established by

Li et al. (2014) satisfy the T transitivity and also looked into its fuzzy equivalents. We

have proposed two new binary aggregation operations in the following section, and a

new divergence measure has been developed to match these operators.

2. Our Results

1. Application

Multicriteria decision making is a very useful and practical technique in the real world.

We can choose the best option among the available options by applying multi-criteria

decision-making. Numerous scholars have used fuzzy directed divergence for multicri-

teria decision making extensively in recent years. In this post, we’ll look into the issue

of many criteria decision making in a fuzzy setting. We have a collection of strategies

for multi-criteria decision-making, such as A1, A2, · · · , An. Assume that each strategy’s

level of efficacy in relation to the budget is different C1, C2, · · · , Cm.

Step 1. First we arrange the preference of decision makers in the form of fuzzy de-

cisionmaking matrix for each alternative AJ(j = 1, 2, · · · , n) w.r.t. cost set Ck (k =
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1, 2, · · · ,m) as follows

Dm×n[ai] =

C1 C2 · · · Cm
A1

A2
...
An


a11 a12 · · · a1m
a21 a22 · · · a2m
...
an1 an2 · · · anm


n×m

Step 2. We determine the ideal solution from all alternative corresponding to their

cost set as

A∗ = {H∗
1 , H

∗
2 , · · · , H∗

n} where H∗
l = max{H∗

i }.

Step 3. Therefore we calculate the divergence using Hα,β(A : B) given as

Hα,β(A,B) =
1

(α− 1)β

n∑
i=1

{[
µαA(xi)µ

1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α]β − 1

}
α > 0, α 6= 1, β 6= 0.

Step 4. To give ranking we take

min{Hα,β(Aj , A
∗)}; where 1 ≤ j ≤ n.

Select the most desirable alternative according with descending order of their function.

Numerical Example

In a fuzzy multicriteria problem we analyze an illustration example of the new define

approach regarding admission preference of a student for Ph. D. course of science

stream. Suppose that the students wants to take admission in university and he want

to select an institute from five option

A1 = Bharti University Durg

A2 = Guru Ghasidas University Bilaspur

A3 = Pt. Ravishankar Shukla University Raipur

A4 = Bastar University Jagdalpur

A5 = Dr. C.V. Raman University Kota.

These are the most valuable institute for science course.The Student wants to choose

university on the following basis

C1 = Placement

C2 = Ranking
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C3 = Faculty

C4 =Facility

C5 = Fee

Step 1. Arranging the value of all alternative we arrange the preference in matrix

Mn×m[mij ]

Mn×m[mij ] =

C1 C2 C3 C4 C5

A1

A2

A3

A4

A5


0.5 0.7 0.8 0.3 0.1
0.7 0.9 0.3 0.2 0.4
0.4 0.8 0.6 0.7 0.5
0.3 0.1 0.5 0.4 0.2
0.1 0.2 0.4 0.8 0.6


Step 2. Optimum solution from above matrix is

A∗ = {0.7, 0.9, 0.8, 0.8, 0.6}.

Step 3. We calculate the divergence of A∗ w.r.t. each alternative as

Table 1

α β Hα,β(A1, A
∗) Hα,β(A2, A

∗) Hα,β(A3, A
∗) Hα,β(A4, A

∗) Hα,β(A5, A
∗)

0.1 0.1 0.14 0.14 0.03 0.31 0.25

0.9 0.1 1.25 1.36 0.34 2.81 2.33

1.1 2.1 1.56 1.74 0.43 3.68 3.05

5 2.1 30.25 72.54 2.60 1960.1 960.5

Step 4. From the table 1 we find that Hα,β(A3, A
∗) has minimum value for all param-

eters so we can easily estimate that the best alternative is . So the student should take

admission in Pt. Ravishankar University Raipur.

2. Application

In the actual world, multicriteria decision making is a very beneficial and useful strategy.

By using multi-criteria decision-making, we may select the best alternative from those

that are offered. In recent years, fuzzy directed divergence has been widely employed

for multicriteria decision making by a number of academics. We’ll examine the problem

of making decisions with multiple criteria in a fuzzy environment in this topic. We

have a variety of methods for making decisions based on several criteria, including
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A1, A2, · · · , An. Assume that the effectiveness of each method in proportion to the

budget varies C1, C2, · · · , Cm.

Step 1. First we arrange the preference of decision makers in the form of fuzzy decision

making matrix for each alternative

AJ (j = 1, 2, · · · , n) w.r.t. cost set Ck (k = 1, 2, · · · ,m)

as follows

Dm×n[aij ] =

C1 C2 · · · Cm
A1

A2
...
An


a11 a12 · · · a1m
a21 a22 · · · a2m
...
an1 an2 · · · anm


n×m

Step 2. We determine the ideal solution from all alternative corresponding to their

cost set as

A∗ = {H∗
1 , H

∗
2 , · · · , H∗

n} where H∗
l = max{H∗

i }.

Step 3. Therefore we calculate the divergence using Hα,β(A : B) given as

Hα,β(A,B) =
1

(α− 1)β

n∑
i=1

log
{[
µαA(xi)µ

1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α]β − 1

}
α > 0, α 6= 1, β 6= 0.

Step 4. To give ranking we take

min{Hα,β(Aj , A
∗)}; where 1 ≤ j ≤ n.

Select the most desirable alternative according with descending order of their function.

Numerical Example

In a fuzzy multicriteria problem we analyze an illustration example of the new define ap-

proach regarding preference of a customer for Two Wheeler. Suppose that the customer

wants to buying two wheeler and he want to select a company from five option

A1 = Hero

A2 = Honda

A3 = TVS

A4 = Bajaj

A5 = Suzuki.
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These are the most valuable company for two wheeler.

The Customer wants to choose company on the following basis

C1 =Mileage

C2 =Availability

C3 =Weight

C4 =Insurance Policy

C5 = Price

Step 1. Arranging the value of all alternative we arrange the preference in matrix

Mn×m[mij ] =

C1 C2 C3 C4 C5

A1

A2

A3

A4

A5


0.5 0.7 0.8 0.3 0.1
0.7 0.9 0.3 0.2 0.4
0.4 0.8 0.6 0.7 0.5
0.3 0.1 0.5 0.4 0.2
0.1 0.2 0.4 0.8 0.6


Step 2. Optimum solution from above matrix is

A∗ = {0.7, 0.9, 0.8, 0.8, 0.6}.

Step 3. We calculate the divergence of A∗ w.r.t. each alternative as

Table 2

α β Hα,β(A1, A
∗) Hα,β(A2, A

∗) Hα,β(A3, A
∗) Hα,β(A4, A

∗) Hα,β(A5, A
∗)

0.1 0.1 -0.85 -0.85 -1.52 -0.50 -0.60

0.9 0.1 0.09 0.133 -0.46 0.44 0.36

1.1 2.1 0.19 0.24 -0.36 0.56 0.48

5 2.1 1.48 1.86 0.41 3.29 2.98

Step 4. From the table 1 we find that Hα,β(A3, A
∗)has minimum value for all param-

eters so we can easily estimate that the best alternative is A3. So the Customer should

buy two wheeler from TVS company.

3. Application

In this section, we present a method to solve decision-making problems using proposed
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fuzzy directed divergence.

FG,K(A,B) =
n∑
i=1

[
(µA(xi) + µB(xi))

4

8(µA(xi)2 + µB(xi)2)
− µA(xi)µB(xi)

+
(2− µA(xi)− µB(xi))

4

8((1− µA(xi))2 + (1− µB(xi))2)
− (1− µA(xi))(1− µB(xi))

]
.

Making decisions means considering a variety of options in an unknowable world. The

decision maker must choose the best plan of action from the available options before

making a choice. Diverse study designed numerous divergence, similarity, and entropy

measurements to choose the optimum course of action. Let’s imagine a decision-making

issue involving a collection of possibilities based on the divergence measure. P =

{P1, P2, · · · , Pm} to be taken into account based on specific criterionD = {C1, C2, · · · , Cn}.
The optimum solution P∗ to the problem is having the highest membership values possi-

ble for each criterion, and characteristic sets for each choice are determined by assigning

suitable values to membership values. Each case’s divergence is calculated, and the op-

tion with the least divergence is chosen.

We take into account a few decision-making issues to demonstrate the usefulness of the

suggested fuzzy directed divergence.

Numerical Example

Suppose customers want to buy a smart watch. Customer wants to select a service

provider from five options: A1, A2, A3, A4, A5 smart watch providers on the basis of

P1 =Sleep Pattern Monitoring

P2 = Step Counting

P3 = Blood Pressure Monitoring

P4 =Heart Rate Monitoring.

For evaluating five alternatives, the decision makers form five fuzzy sets as

A1 = {(P1, 0.5), (P2, 0.6), (P3, 0.3), (P4,−.2)}

A2 = {(P1, 0.7), (P2, 0.7), (P3, 0.7), (P4, 0.4)}

A3 = {(P1, 0.6), (P2, 0.5), (P3, 0.5), (P4, 0.6)}

A4 = {(P1, 0.8), (P2, 0.6), (P3, 0.3), (P4, 0.2)}

A5 = {(P1, 0.6), (P2, 0.4), (P3, 0.7), (P4, 0.5)}.



36 ROHIT KUMAR VERMA & JHARANA CHANDRAKAR

Optimal Solution is

A∗ = {(P1, 0.8), (P2, 0.7), (P3, 0.7), (P4, 0.6)}.

Divergence of A∗, w.r.t. each option given as

D(A1, A∗) = 0.027728

D(A2, A∗) = 0.000876

D(A3, A∗) = 0.002917

D(A4, A∗) = 0.023099

D(A5, A∗) = 0.005059.

Optimal solution is with minimum divergence is A2 with preference order given as

A2, A3, A5, A4, A1. So customer should buy smart watch from operator A2.

4. Application

In this section, we present a method to solve decision-making problems using proposed

fuzzy directed divergence.

FG,K(A,B) =

n∑
i=1

log

[
(µA(xi) + µB(xi))

4

8(µA(xi)2 + µB(xi)2)
− µA(xi)µB(xi)

+
(2− µA(xi)− µB(xi))

4

8((1− µA(xi))2 + (1− µB(xi))2)
− (1− µA(xi))(1− µB(xi))

]
.

Making choices in an uncertain environment requires weighing a range of options. Be-

fore making a decision, the decision-maker must select the best course of action among

the available possibilities. To select the best course of action, many studies created nu-

merous divergence, similarity, and entropy metrics. Consider a situation where you have

to choose between a range of options depending on the divergence metric. Taking into

account P = {P1, P2, · · · , Pm} based on a specified requirement D = {C1, C2, · · · , Cn}.
The problem can be solved best by having the highest membership values for each cri-

terion; characteristic sets for each option are determined by giving membership values

appropriate values. The option with the least amount of divergence is selected after the

divergence for each case is determined.

To show the value of the recommended fuzzy directed divergence, we take into account

a few decision-making challenges.
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Numerical Example

A wants to open manufacturing bricks of cement and they need to select the location

out of six locations L1, L2, L3, L4, L5, L6 on the basis of

D1 = Business Climate

D2 = Quality of Labour

D3 = Quality of Labour

D4 = Suppliers

D5 = Total Costs

D6 = Proximity of customers

D7 = Free Trade Zone.

For evaluating six locations, the management formed six fuzzy sets as follows:

D1 D2 D3 D4 D5 D6 D7

L1 0.,4 0.7 0.5 0.9 0.4 0.6 0.6

L2 0.7 0.9 0.6 0.7 0.6 0.6 0.8

L3 0.9 0.6 0.4 0.5 0.7 0.5 0.3

L4 0.5 0.5 0.6 0.3 0.6 0.8 0.7

L5 0.6 0.5 0.7 0.6 0.7 0.5 0.5

L6 0.4 0.3 0.2 0.5 0.5 0.4 0.3

Optimal solution is

L∗ = {(D1, 0.9), (D2, 0.9), (D3, 0.7), (D4, 0.9), (D5, 0.7), (D6, 0.8), (D7, 0.8)}.

Divergence of from each given option L1, L2, L3, L4, L5, L6 is given as

D(L1, L∗) = −1.4157

D(L2, L∗) = −2.249

D(L4, L∗) = −1.089

D(L5, L∗) = −1.417

D(L6, L∗) = −0.799.

The optimal solution is with the minimum divergence. So management should open

factory of cement bricks at location L2, with preference order L2, L5, L1, L3, L4, L6.
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Conclusion

In this article we describe fuzzy directed divergence measure is very suitable measure to

solve the multicriteria decision making problem. Some fuzzy directed divergence mea-

sure has been applied to a few illustrative examples of decision making problems, which

shows how it helps in decision making by minimizing fuzzy directed divergence.
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